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A two-dimensional model for industrial production-type cells in which electrodes have holes for releasing 
gas bubbles to the back side of the electrodes and a separator located between the working- and counter- 
electrodes is proposed in conjunction with some geometrical parameters of the electrode and the cell. 
The primary current distribution in this model was calculated for a series of values of the parameters by 
the finite element method. The current distribution in the celt with the separator is quite different from 
that without the separator. Variations of the ohmic potential drop with the parameters reveal that the 
cell resistance is determined not only by the interelectrode distance but also by the per cent open area 
and in some cases by the superficial surface area. The partitions of the total current into the currents on 
the front, the back and the intermediate sides of the working-electrode are obtained as functions of the 
per cent open area and the superficial surface area. These results may be useful for estimating the perfor- 
mance of the electrode. 

Nomenclature 

b distance from the back wall to the back side 
of the working-electrode 

da distance between the front side of the 
working-electrode and the separator (or the 
counter electrode when cell has no separator) 

d2 width of the separator 
I total current per half pitch 
L length of a real electrolysis cell 
n coordinate perpendicular to the boundary of 

the model cell 
op per cent open area, given by Equation 1 for 

the present model 
p pitch, i.e. twice the length of the unit cell 
R equivalent unit-cell resistance defined by 

Equation 13 
R t total cell resistance 
r ratio of the average current density on each 

side of the working-electrode to that of the 
counter-electrode 

s superficial surface area, given by Equation 2 
for the present model 

t thickness of the working electrode 
u~ function defined by Equation 10 
v test function 
w width of the working electrode 
x abscissa located on the cell model 
y ordinate located on the cell model 
d7 infinitesimal length on the boundary 
Pa resistivity of the solution phase 
02 resistivity of the separator 

potential 
~* potential at the working electrode 
P linear integration contour along I0, AH or 

EFDH 
~2 double integration space in the solution or the 

separator phase 
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Subscripts 

k solution (k = 1) or separator (k = 2) 
i interface between solution and separator 
e working-electrode or counter-electrode 

1. Introduction 

One of the significant factors which causes an 
increase in ohmic potential drop in industrial elec- 
trolytic cells is cell configuration or electrode 
geometry. Electrodes employed at present in well- 
developed factories have been designed to mini- 
mize the ohmic drop and there are several types of 
geometry, e.g. an expanded electrode, a louvre- 
type electrode, a perforated electrode and a woven 
electrode. Most of them have voids or holes 
through which a solution and evolving gas bubbles 
pass to be removed from the interelectrode space. 
Voids in the working-electrode, playing a role in 
promoting mass transport, bring about non- 
uniform current distribution because the inside 
wall of the voids and the back surface of the 
working-electrode as well as the electrode surface 
facing a counter-electrode act as active electrode. 
Therefore ohmic potential drop may be different 
from that estimated by the uniform current distri- 
bution. It is of interest and of significance to 
examine to what extent the inside of a void and 
the back side of the electrode take part in electro- 
lysis and how much the ohmic loss is due to the 
voids in an electrode. These problems require 
knowledge of the potential distribution in a cell. 

Potential distribution can be obtained by a sol- 
ution of the Laplace equation. Kasper, for the first 
time in the electrochemical field, calculated cur- 
rent distributions in the point-plane system, in the 
line-plane system and in two-dimensional rec- 
tangular enclosures [ 1-3 ]. Ishizaka and Matsuda 
[4-7] and Wagner [8, 9] extended his approach to 
rectangular cells with more complicated geometries 
by the use of the Schwarz-Christoffel transfor- 
mation and further examined the effects of the 
overvoltage on the current distribution. Hine [10] 
evaluated the effects of the back wall in a rec- 
tangular cell on the current distribution. Recently, 
Vaaler [11 ] approximated the resistances of a cell 
and an electrode as a three-dimensional grid net- 
work and calculated current distribution in the 
cell. The effects of gas evolution on current distri- 

bution and cell resistance have been presented by 
various authors (Tobias [12], de la Rue and Tobias 
[13], Sides and Tobias [14, 15], Hine etal. [16, 
17], Hine and Murakami [18, 19], Nagy [20], 
Kuhn et al. [21], Kreysa and Ktilps [22], Jorne and 
Louvar [23], Janssen et al. [24], Vogt [25], Lanzi 
and Savinell [26]). Since these papers are con- 
cerned with an increase in the ohmic potential 
drop due to evolving gas bubbles, detailed depen- 
dence of current distribution on a cell geometry 
has not been described systematically. Therefore, 
it is necessary to examine such dependence in a 
cell composed of electrodes having voids in order 
to obtain an optimum electrolysis condition from 
the viewpoint of cell geometry. 

This paper is devoted to theoretical examin- 
ation of the geometrical effect by computing the 
primary current distribution in a solution and a 
separator phase with a uniform resistivity when 
the geometries of the electrode and the cell are 
varied in the two-dimensional model cell. The 
computational method employed is the finite 
element method, which was first developed in the 
field of structural stress analysis and has since been 
applied extensively to various other fields. The 
finite element method has recently been used in 
some electrochemical problems concerned with 
cell and electrode geometry [27-29]. 

2. A choice of model 

There are several significant parameters that deter- 
mine the configuration of the cell and geometry 
of the electrode. One is the per cent open area, op, 
which is defined as the percentage ratio of the 
total projected area of holes to the projected area 
of the electrode. Another parameter is the super- 
ficial surface area, s, which is expressed as the ratio 
of the electrode area in contact with the electro- 
lyte to the projected area of the electrode. The 
other parameters are thickness of the electrode, 
width of the electrode and pitch, i.e. the length of 
the unit cell. It must be noted that these param- 
eters are not necessarily independent of each 
other. In connection with the location of the elec- 
trode in the cell or an arrangement of the cell, 
there are two more parameters. One of these is the 
distance between the working-electrode and the 
separator (e.g. an ion exchange membrane or a 
diaphragm). The other is the width of the cell, i.e. 
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the distance between the separator and the back 
wall. Ultimately, an adequate combination of 
these parameters might yield a cell with high per- 
formance. 

Taking into account the implication of the par- 
ameters described above, we set up a two- 
dimensional model of the cell configuration, as 
shown in Fig. la. The region encircled with 
ABCDEFGH is a phase filled with electrolyte sol- 
ution. The domain, DEFG, represents the working- 
electrode whereas the region surrounded by OAHI 
is the counter-electrode or the separator to the left 
of which the counter-electrode is attached. The 
other sides, AB, BC, CD and GH, are insulated 
walls. Head to head and tail to tall connections of 
the model cell yield the cross section of the 
assembly of the strip-shaped electrodes, as shown 
in Fig. lb. The dimensions of the cell are shown in 
Figs. la, b, where the pitch, p, is used as a charac- 
teristic length of the model. The important charac- 
teristics of the electrode geometry are revealed in 
the per cent open area, the superficial surface area 
and the pitch. In terms of these dimensions, the 
per cent open area, Op, and the superficial surface 
area, s, can be expressed, respectively, as 

op = lO0(p- -w) /p  (1) 

s = 2(w + t)/p (2) 

The per cent open area is equivalent to the com- 
plement of w in this model. 

There is a solution between the counter- 
electrode and the separator in a real cell. It is poss- 
ible to replace the sum of the resistances of  the 
separator and the solution by an equivalent resis- 
tance of the separator. Therefore this model 
approximates a real cell so far as evaluation of the 
current distribution in the vicinity of the working- 
electrode is concerned. 

This model has been proposed in the light of 
the configuration of the assembly of strip-shaped 

Fig. 1. Two-dimensional cell model (a) 
unit cell, (b) head-to-head and tail-to-tail 
connections of the unit cells, which 
corresponds to an assembly of strip- 
shaped electrodes. 

electrodes. However, it is possible to readily 
reduce the geometry of the real cell, which has 
some known values for the per cent open area, the 
superficial surface area and the thickness of the 
electrode (e.g. a perforated electrode), to the pro- 
posed model by the use of Equations 1 and 2. 

3. Computation of current distribution 

It is possible to regard the cell without a separator 
as a special case of the cell with a separator, the 
resistance of which has the same value as that of 
the solution. Hence, only the cell with a separator 
is dealt with in this section. 

We shall obtain the primary current distribution 
in the model cell on the assumptions that the 
solution and the separator have uniform resistivi- 
ties over each phase and that the resistances of the 
working- and the counter-electrodes are small 
enough to be negligible in comparison with those 
of the solution and the separator. Therefore, 
potential is distributed only in the solution and in 
the separator. The potential, q~, in both phases is 
expressed by the two-dimensional Laplace 
equation given by 

a2r + ~2~/~y2 = 0 (3)  

where x andy denote the coordinates depicted in 
Fig. la. The potential at the working-electrode is 
taken to have a constant value, ~*, while the 
potential at the counter-electrode is assumed to be 
zero, i.e. 

~b = ~* on the sides DEFG (4) 

= 0 on the side OI (5) 

Since there is no sink or source of current at the 
interface between the separator and the solution, 
the current density in the solution is equal to that 
in the separator at the interface, i.e. 

p2(OO1/OX) -= pl(Or on the side AH 

(6) 
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where subscripts 1 and 2 denote the solution and 
the separator, respectively. There is, in general, a 
membrane potential at the interface when the 
separator is an ion exchange membrane. It is 
assumed here that the membrane potential does 
not vary with current density. Then the potential 
distribution is the same as one without a mem- 
brane except for the constant value of the mem- 
brane potential. Hence the membrane potential is 
taken to be zero in this paper. Potentials in both 
the phases at the interface are expressed by 

r = ~1 on the side All (7) 

On the sides of the insulated wails, the potential 
gradient is zero: 

i~4)/an = 0 on sides OB, BC, CD and GI 

(8) 

where n denotes the coordinate perpendicular to 
the wall. 

Since our target is to obtain the relation of the 
potential distributions with various configurations 
of the cell, it is necessary to employ a compu- 
tational method which can bear rather arbitrary 
variations of cell geometry. One of the most 
flexible methods is the finite element method 
[301. 

We solve the boundary value problem expressed 
by Equations 3-8 using the Conventional finite 
element method [30]. Multiplying Equation 3 by a 
test function v = v(x, y), integrating it over the 
solution or the separator phase by application of 
Green's theorem and inserting the boundary con- 
dition (Equation 7) into the resulting equation 
yields: 

1) (~r +fre (adp/On)VdT--Ut~ = 0 

with (9) 

.h = ] j'ah [(ar + OCklay)(avlay)] 

x dxdy (10) 

The upper and lower signs in the first term of 
Equation 9 are for the separator and the solution 
phase, respectively. Multiplying Equation 9 by Pl 
for the upper sign and by P2 for the lower sign and 
adding these two equations using Equation 6, we 
obtain 

P2 fDEFG (~b/~H)vd'~ -~- ~lfl O (~b/~H)vd? 

= p2ul+plu2 (11) 

The solution and the separator phases were sub- 
divided into square elements of the same size. The 
reason for adopting the square element is that it is 
possible to easily alter the configuration of the cell 
only by renumbering the element numbers with- 
out any assignment of a coordinate to each node. 
We are not interested in local variations of poten- 
tial distribution or current density but are con- 
cerned with the global features of distribution and 
the total flux. Therefore the linear interpolating 
function, which is the simplest and also enhances 
computation speed, was used to approximate the 
equation in each element. A global matrix was 
assembled directly by the stiffness method and 
was arranged in the form of a banded and sym- 
metric matrix. When the Difichlet conditions given 
by Equations 4 and 5 are inserted into this matrix, 
line components in the matrix corresponding to 
the Dirichlet conditions should be taken to be 
zero. Otherwise simultaneous equations might be 
singular. The set of simultaneous equations 
involving the Dirichlet conditions was solved by 
the Gauss elimination method. When values thus 
obtained at all nodes are substituted into the 
matrix corresponding to the right hand side of 
Equation 11, the resulting equation divided by 
Pl P2 is reduced to the simultaneous equations 
with respect to the current density expressed by 
(ar These simultaneous equations were 
solved again by the Gauss elimination method. It is 
also possible to obtain the current density by the 
difference between values at adjacent nodes. We 
found, however, that values of the current density 
obtained by the difference method are less accu- 
rate than those by the present method, therefore 
we did not use the difference method. The total 
current, I, i.e. the sum of the current densities at 
all nodes of the boundaries is expressed by 

I = fDEFG (O(ol/On)dT/Pl (12) 

The integral of this equation was calculated by 
Simpson's 1/3 rule. 

All computer programs were coded in standard 
Fortran IV. Since the global matrix is banded and 
symmetric, only the upper half elements of the 
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banded part were loaded in computer memories. 
In order to check whether our computer program 
was reasonable or not, we computed with this 
program the current distribution in the model cell 
wherein lengths of EF and FG were taken to be 
4 x all. This current distribution was compared 
with the distribution around the corner in the T- 
shaped ditch for which an exact expression has 
been obtained analytically using the Schwarz- 
Christoffel transformation [31 ]. The maximum 
deviation from the analytical solution, which 
occurred at the node next to the corner, was 
within 1% when the ratio of the length of the 
square element to dl was 0.1. This fact indicates 
that the current density even in the vicinity of the 
corner can be obtained reasonably, though it is 
impossible to obtain the exact current density at 
the corner because of its singularity. 

The total current,/, defined by Equation 12 
should equal the total currents flowing through 
the surface of the counter-electrode and also 
through the interface between the solution and the 
separator. We used this equivalency as a criterion 
of verification of the computation and found that 
three total currents were in agreement within 
errors of 1.5%. 

The errors involved in the calculated potential 
are diminished in general with an increase in the 
number of elements. However, the accuracy some- 
times falls with an increase in the number of 
elements because of the accumulation of round-off 
errors during iteration of the computation. From 
our tentative and empirical computation, the mini- 
mum error seems to be achieved when the number 

of elements is from 1500 to 2500, which corre- 
sponds to less than 1 megabyte capacity in IC- 
memory including the load module for the Fortran 
source program. 

4. Results and discussion 

4.1. Current distribution 

The potential distributions in cells with and with- 
out a separator are drawn in Figs. 2a, b, respec- 
tively, where the resistivity of the separator is 
assumed to be 100 times as large as that of the sol- 
ution. The corresponding current distributions at 
the working- and counter-electrodes are depicted 
in Fig. 3. The current density increases rapidly in 
the vicinity of the corners of E and F owing to the 
edge effect. The current density decreases pro- 
gressively with distance of the working-electrode 
from the counter-electrode. 

In the absence of a separator, the current con- 
centrates on the FG-side and the confronted part 
of the counter-electrode. In the presence of a 
separator, the current distribution becomes 
relatively uniform because the current density is 
mainly controlled by the high resistivity of the 
separator. In other words, the separator behaves as 
if it were a uniform current source. As a result, the 
currents at the DE and EF sides increase in com- 
parison with those without a separator. 

The current densities at the corners, E and F, 
should be infinite from the theoretical point of 
view. However, the values at E and F in Fig. 3 are 
finite because they are averaged around the 

IH ~ ~ C 

0.994 L 92 

0 A  o p P p p B R P .~ P P P B 

Fig. 2. Potent ia l  d ist r ibut ions in the cell w i t h  the fo l low ing  parameters: d l /p  = 0.033,  w/p = 0.5, t/_p = 0.25 and b/p = 
0.5 when the separator is (a) present and (b) absent. The thickness and the resist iv i ty o f  the separator are d2/p = 0.033 
and Pz/P1 = 100, respectively. 
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Fig. 3. Current distributions at the working- and counter- 
electrodes in the cells corresponding to Figs. 2a, b. The 
coordinates of the current densities are taken to be per- 
pendicular to the electrode surfaces. The solid lines are 
for the cell without the separator (d~ = 0) while the 
dashed lines are for the cell with the separator (d2/p = 
0.033 and P2/PI = 100). 

7.8 

corners by the linear interpolation employed in 
the finite element method. 

4.2. Dependence of  the unit-cell resistance on the 
per cent open area, op, and the distance, d~ 

An equivalent cell resistance, R, per unit cell is 
defined by 

R = (o*/1 (13) 

where I is evaluated by Equation 12. In Figs. 4a-c,  
variations of the equivalent cell resistance with the 
per cent open area are shown for various values of  
dl/p, s = 2 and d2/p = 0.033 when values ofp2/pl 
are 100, 10 and 1, respectively. Since zero per cent 
open area corresponds to two parallel electrodes o f  
the same size, the cell resistance is calculated on 
the basis of  the simple uniform current distri- 
bution, as follows 

R = (p2d2 + pidl ) / (p /2)  (14) 

As values of  the per cent open area increase, the 
cell resistance is increased in concave form because 
the electrode parts ineffective for electrolysis (EF 
and DE sides) increase at the expense of  the effec- 
tive part (FG side). 

When dl  values are large, the profile o f  the cur- 
rent distribution can be determined by the resis- 
tance of  the solution phase alone. Indeed, when 
values of  dl]p are larger than 0.15, the cell resis- 
tances subtracted from these of  zero per cent open 
area are almost identical with each other regardless 
of  the existence of  the separator. We sought a 
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1.8 

~ 181 
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< 
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1.2, 

~ t S l  

I t ~ t 1 ; t 1 

0.8" - ~ m  

I@l 

t I I t I I I I 

OI 20 40 80 80 I00 

o~ 
Fig. 4. Variations of cell resistance with per cent open 
area for s = 2; dJp = 0.033; dl/p =, (1) 0.33, (2) 0.25, 
(3) 0.2, (4) 0.15, (5) 0.117, (6) 0.083, (7) 0.05, (8) 0.033, 
(9) 0.017; and O2/O~ = (a) 100, (b) 10 and (c) 1, 

simple expression for such curves and obtained the 
following approximate equation: 

R = (p2d2 + pldl) (p/2)  + 0.333(Op/100)2"1pl 

( is)  

This equation is valid for o v ( 80% and dl/p > 
0.13 within 2% error. It indicates that the cell 
resistance can be expressed by the sum of the 
interelectrode resistance and the resistance o f  the 
open part. Electrode geometry is a significant 
factor in cell resistance in the case of  a small inter- 
electrode resistance. 

When values of  d2 are changed keeping constant 
the resistance of the separator,/)2 d2, the cell resis- 
tance may be varied due to a change in the current 
distribution within the separator. However, it is 
found that the cell resistance remains almost 
constant providing that #2/P~ > 10 and 
0.3 < (p2/pl)(d2Jp) < 3.5. 



PRIMARY CURRENT DISTRIBUTION IN A TWO-DIMENSIONAL MODEL CELL 659 

The curves in Fig. 4 do not vary greatly with 
superficial surface area when s is larger than 1.5, as 
described in the next section. 

4.3. Effects of  t and b on the unit-cell resistance 

The contribution of variations in the thickness of 
the electrode t to the equivalent unit-cell resis- 
tance R is less than 3% under the conditions that 
Op < 60%, s > 1 and dl/p > 0.033 whether the cell 
has a separator or not. Examination of the depen- 
dence of R on b demonstrated that variations of R 
with b are one-third as small as those with t. Most 
of the real production-type cells satisfy the above 
conditions. Consequently t and b, especially b, 
have negligible effects on variations of R though 
they have some effects on the current distributions 
on the FG and EF sides. 

4.4. Partial currents at three sides o f  the electrode 

Of interest is the sum of the current density at 
each side of the working-electrode. In Fig. 5a, the 
partial currents at three sides in the absence of a 
separator are plotted vs the per cent open area for 
dl/p = 0.033 and four values of the superficial sur- 
face area. This figure indicates that electrolysis 
occurs predominantly on the FG side. Therefore, 
concentration variations of reactants and products 
become large in the interelectrode region and 
hence concentration overvoltage at the FG side 
must be taken into account when one estimates 
the cell resistance. 

In Fig. 5b, the partial currents in the presence 
of a separator are plotted vs the per cent open area 
when dt/p = 0.033 and P2/Pt = 100. The vari- 
ations of the partitions with per cent open area are 
larger than those observed in Fig. 5a. With an 
increase in op, the partitions at the FG and DE 
sides decrease linearly while the partition at the 
EF side increases. The linear dependence of the 
partition at the FG side on Op results from the 
linear decrease in the length of FG, i.e. the 
decrease in the electrode area. Hence the partition 
at the FG side is almost independent of values of 
the superficial surface area. The fact that the sum 
of the partitions at the DE and EF sides is propor- 
tional to op indicates that the part of the void 
with length (p -- w)/2 behaves as if it were the 
electrode with a slightly worse performance than 
the performance for the FG side. 

Figs. 5a, b may be helpful for estimating 
amounts of electrolysis products and reactants at 
the three sides of the electrode. 

4.5. Average current density on three sides o f  the 
electrode 

An economically viable electrolysis process 
requires not only a reduction of the cell resistance 
but also durability of the electrode. Since in most 
cases, the durability of the electrode is strongly 
dependent on current density, uniform current 
density over the electrode is the most favourable 
condition for durability. As a measure of the 

100 100 
{4) 

BO 80 EF 
~33 

60 60 u~ 
c 

2 _2 

4o EF 4o, 
2 

,# ~ . (4  
{3_ [ 1 )  n 

20 20 

E 
O{ ' 2'8 40 60 80 100 O( , , , , ~ , , , , 20 40 60 80 100 

(a) O, (b) Op 

Fig. 5. Partition of  the  total  current into the currents on the three sides of  DE, EF and FG for s = (1) 1.0, (2) 1.2, 
(3) 1.5 and (4) 2.0 in cells (a) without and (b) with the separator of P2/01 = 100. 
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Fig. 6. Ratio of the average current density on the three 
sides of DE, EF and FG to that of the counter-electrode 
for s = (1) 1.0, (2) 1.2, (3) 1.5 and (4) 2.0 for 02/Pl = 
10. 

durability, we calculated the average current den- 
sity on the DE, EF and FG sides. 

In Fig. 6, the ratio of  the average current den- 
sity on each side to the average current density at 
the counter-electrode, r, is shown for some values 
of  the superficial surface area when drip = 0.033 
and P2/P~ = 10. The average current density at the 
FG side varies slightly with the superficial surface 
area whereas variations of  the current density at 
the EF side with op depend remarkably on the 
superficial Surface area. The large values o f r  at the 
EF side result from the edge effect because such 
combinations of  op and s describe very thin elec- 
trodes. If  r is assumed to be a measure of  a long 
electrode life, an electrode with a small value of  r 
is desirable for durability. For example, electrodes 
with regions of s > 1.6 at op = 30%, s > 1.3 at 
op = 50% and s > 1.0 at Op = 70% may have a 
good durability. The curves for the other values o f  
dl/p and P2/01 show variations similar to those in 
Fig. 6. 

4.6. Effect of  pitch on total cell resistance 

A cell with a definite length L can be constructed 
with a combination of  either a large number of  
small unit cells or a small number of  large unit 
cells. One problem is: which combination is pref- 

~ 4 cB 

+ 

I 

L~ 

iO 20 30 40 

p/d l  
Fig. 7. Plots of the total cell resistance against the pitch 
for Op = 25% (---) ,  50% ( - - - ) ,  75% ( ), P:/Ot = (A) 
100, (B) 10 and (C) 1 and t/d I = 15. 

erable for electrolysis? The question can be 
reduced to the effects of  the pitch on the unit-cell 
resistance. The effects are revealed by varying 
values of  p/L and w/L simultaneously keeping 
values o f o  w Pl, P~, dl, d2, t and b constant, i.e. by 

expanding the cell only in the direction of  the 
y-axis. In Fig. 7, the total cell resistance, Rt ,  sub- 
tracted from the cell resistance caused in the inter- 
electrode region are plotted against p/dl for 
several values of  the per cent open area. When p/dl 
values are small, the total cell resistance is 
expressed by 

Rt = R(p/2L) =(p2d~ + 01dO/L 

+ O.167(op/lOO)2aplp/L (16) 

The curves in Fig. 7 and this equation indicate that 
as the p value approaches zero, the cell resistance 
tends to values of  the resistance between two 
parallel electrodes, which is the most preferred 
geometry for electrolysis. Therefore, making the 
unit cell small leads to a reduction of  the cell resis- 
tance. However, a real cell composed of  extremely 
small unit cells might make the cell resistance high 
because it necessarily makes the absolute size of  
voids small and thus the specific resistance in the 
interelectrode gap becomes high due to an accu- 
mulation of  gas. Therefore there exists an opti- 
mum size of  the pitch. 
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